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The weakly nonlinear, weakly damped response of the free surface of a liquid in a 
vertical circular cylinder that is subjected to a simple harmonic, horizontal translation 
is examined by extending the corresponding analysis for free oscillations. The 
problem is characterized by three parameters, a, p and dla, which measure damping, 
frequency offset (driving frequency - natural frequency), and depthlradius. The 
asymptotic ( tTco)  response may be any of: (i) harmonic (at the driving frequency) 
with a nodal line transverse to the plane of excitation (planar harmonic) ; (ii) harmonic 
with a rotating nodal line (non-planar harmonic) ; (iii) a periodically modulated 
sinusoid (limit cycle) ; (iv) a chaotically modulated sinusoid. It appears, from 
numerical integration of the evolution equations, that only motions of type (i) and 
(ii) are possible if 0.30 < d/a < 0.50, but that  motions of type (iii) and (iv) are possible 
for all other d/a in some interval (or intervals) of /3 if a is sufficiently small. Only 
motion of type (i) is possible if a exceeds a critical value that depends on dla. 

1. Introduction 
The weakly nonlinear, resonant response (sloshing) of the free surface of water in 

a vertical, circular cylinder that  is subjected to  a simple harmonic, horizontal 
translation has been investigated by Hutton (1963). He concluded from his analysis 
that, as in the analogous problem for the spherical pendulum (Miles 1962): ( a )  
harmonic? motion of the dominant mode with a nodal line perpendicular to the plane 
ofexcitation (cf. planar motion of the pendulum) is unstable in a certain neighbourhood 
of the natural frequency of that mode; ( b )  (nonlinearly) coupled motion of the two 
dominant modes with orthogonal nodal lines (cf. non-planar motion of the pendulum) 
is stable in a spectral neighbourhood that overlaps neighbourhoods of both stable and 
unstable motions of type (a ) ;  (c) no stable, harmonic motion is possible in a finite 
neighbourhood of the natural frequency. He confirmed these predictions in laboratory 
experiments. 

I recently (Miles 1984a) reexamined the pendulum problem in order to explore the 
transitions from regular to chaotic motion in the context of strange attractors, which 
were discovered by Lorenz (1963) a t  about the time the above work was carried out 
and have since been widely investigated (for references see Lichtenberg & Lieberman 
1983). This, in turn, led me to reexamine the fluid-sloshing problem, with the primary 
aims of introducing damping and determining the parametric regime (if any) in which 
chaotic motion is possible and the secondary aim of rendering Hutton’s formulation 
both more compact and more flexible. 

t I use ‘harmonic’ to mean simple harmonic or, equivalently, monochromatic. 
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I begin, in $ 2 ,  by calculating the Lagrangian for the free-surface motion in the 
circular basin, using the amplitudes of the normal modes as generalized coordinates. 
This calculation follows an earlier formulation for nonlinear waves in cylinders of 
arbitrary cross-section (Miles 1976) and the specific application of that  formulation 
to free, internally resonant oscillations in a circular cylinder (Miles 1984b) ; equations 
from these two papers are cited by the respective prefixes I and 11. The non- 
axisymmetric normal modes for the circular basin occur in pairs, the members of 
which have the same radial and azimuthal wavenumbers, and therefore the same 
natural frequency, and differ only in the positions of their radial nodal lines; in 
particular, the dominant pair (azimuthal wavenumber one and no circumferential 
nodal lines) has nodal lines that may be chosen perpendicular and parallel, 
respectively, to the plane of excitation. The fluid motion is excited by a planar 
displacement xo cos wt ,  where xo/a = O(e3) ,  0 c e 4 1, a is the radius of the basin, 
w - w I  = U(e2w1), and w1 is the natural frequency of the dominant mode(s). This 
proximity to resonance implies the failure of the linear approximation ; however, a 
uniformly valid approximation may be obtained by retaining terms of fourth order 
(in the amplitude) in the Lagrangian, which imply cubic nonlinearity in the equations 
of motion. The resonant balance between the inertial and gravitational restoring 
forces for the dominant modes implies a balance between the cubic and forcing terms, 
in consequence of which the amplitudes of the dominant modes are O(e). Secondary 
modes of azimuthal wavenumbers 0 and 2 and amplitudes O(e2) are excited at 
frequencies of 0 and 2w through nonlinear coupling, as in 11. The remaining modes 
are excited only a t  O(c3) ,  except in small neighbourhoods of internal resonance 
(see $3), only one of which appears to  be of practical importance. (It perhaps should 
be emphasized that the modal truncation in the present problem is fully justified by 
the restriction to resonant excitation and differs qualitatively from that invoked in 
Lorenz’s (1963) model of convection.) 

In  $3  I pose the generalized coordinates of the dominant modes, say ql and qz, as 
slowly modulated sinusoids with carrier frequency w (the Van der Pol transformation) 
and those of the secondary modes as sinusoids with frequency 2w plus steady 
components, average the Lagrangian over the period 2n/w to eliminate the carrier, 
and then invoke Hamilton’s principle and eliminate the amplitudes of the secondary 
modes to obtain (in $4) four, first-order, evolution equations for the four, slowly 
varying, amplitudes of the dominant modes. I also introduce linear damping a t  this 
point. These evolution equations comprise three parameters : a, which measures 
damping; p, which measures resonant offset; and the aspect ratio dla  (d  is the 
quiescent depth of the fluid). They are identical in form with the corresponding 
evolution equations for either the spherical pendulum (Miles 1 9 8 4 ~ )  or a stretched 
string (Miles 1984c), but with coefficients that  depend on the additional para- 
meter d la .  

The analysis in $55 and 6, wherein the equilibrium (fixed) and bifurcation points 
of the evolution equations and the stability of the equilibrium points are calculated, 
follows that for the pendulum. Numerical integrations, using the same programs 
(modified to incorporate the additional parameter d l a )  as in the pendulum problem, 
yield similar phase-plane trajectories and power spectra. I n  particular, the asymptotic 
(t+co) motion typically is harmonic if the evolution equations have a stable fixed 
point for a given set of parameters. This motion may be either planar or non-planar, 
depending on the fixed point ; two stable fixed points, one corresponding to planar 
motion and the other to non-planar motion, exist in certain parametric regimes, and 
which motion is attained depends on the initial conditions. The motion is either a 
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periodically modulated sinusoid (limit cycle) or a chaotically modulated sinusoid in 
those parametric domains in which no stable fixed points exist. There is a limited 
domain, 0.30 < d / a  < 0.50, in which a t  least one stable fixed point exists, and limit 
cycles and chaotic motion are not found, for any combination of a and p ;  outside 
of this domain, limit cycles or chaotic motions are possible in some interval of /3 if 
a is inferior to a critical value that depends on d/a.  

2. The Lagrangian 
We pose the free-surface displacement in the form 

~ ( r ,  8, t )  = r,(t)  $,Pi 81, (2.1) 

where r and 8 are plane polar coordinates, the repeated indices are summed over the 
participating modes, the 7, are generalized coordinates, 

$, = $2js = N;lJ,(k,,.r)(cosiB, sini8) ( 2 . 2 ~ )  (i = 0,1, ..., j = 1,2 ,  ...), 

(2 .2b ,  c )  

where Ji is a Bessel function, and kij  is one of the infinite, discrete set of eigenvalues 
determined by (2.2 b )  ; 

(2.3) 

where S,, is the Kronecker delta. Each of the eigenfunctions requires three indices 
(the azimuthal wavenumber i ,  the radial wavenumber j, and, except for the 
axisymmetric modes, the superscript c or s to distinguish between cosine and sine 
azimuthal variations) for its complete specification, and the use of a single index in 
(2.1) and subsequently is merely a convenient abbreviation. We reserve the single 
subscripts 1 and 2 for the dominant (or primary) modes according to 

loa j: $, $, r dr d8 = S,, nu2, 

$,,, = $;is = N-lJ,(kr) (cos8, sin@ 
(2.4) 

The Lagrangian for free oscillations is given by II(2.12). I n  the present problem, 
in which the basin is subjected to the x-directed displacement xo cos o t ,  I1 (2.12) must 
be augmented by the external potential - F, r,, where 

( 2 . 5 )  

( N  = N, ,  = 0.3455, k = k, ,  = 1.8412/a). 

F, = - X o  X, = o2x0 x1 

is the generalized force obtained by letting zi-x = box, in I (3 .5a) ,  and 
Pa rzn 

x$, r dr d8 = 0.4968~ (2.6) Jo Jo 5, = ( R a y  

wherein terms of sixth order in 7, have been neglected, 

t The generalized forces also are non-zero for, and therefore excite, each of the remaining ~ y l  
modes; however, the amplitudes of these modes are O(e3) and therefore negligible compared with 
those, (3.1) and (3.2), included in the present formulation. 
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on is the natural frequency (so that a, is the equivalent pendulum length) of the nth 
mode, and the coefficients aImn (dimensionless) and ajEmn (inverse length) are defined 
by I(3.3) and calculated in the appendix of 11. 

3. The average Lagrangian 
The equations of motion implied by (2.7) contain terms of first and third order in 

the dominant modes, rl, 2. The linear inertial and gravitational restoring terms in the 
equations for the dominant modes approximately cancel in the neighbourhood of 
resonance (o x wl), and a balance between the nonlinear terms and F1 = O(e3) ,  where 
e is a dimensionless scaling parameter (see (3.5) below), implies rl, = O(e). Secondary 
(non-resonant) modes are forced by terms that are quadratic in rl and q2 and therefore 
are O(e2) .  A consistent formulation then requires that each of the four terms in the 
brackets in (2.7) be O(e4). It follows that the resonant neighbourhood is defined by 
o2 - o; = O(e2w2). It also follows that (as in 11) two of the terms in the triple product 
r j l  rjm rj, must correspond to the dominant modes, and almn then differs from zero only 
if the third term corresponds to a secondary mode with azimuthal wavenumber 0 or 
2 (the products of the dominant modes introduce sin26, cos26 and sin 26 in the 
correlation integrals from which almn is derived, and these products are orthogonal 
to cos if3 and sin i6 unless i = 0 or 2). The dominant modes may be posed as slowly 
varying sinusoids with the carrier frequency w ; accordingly, the quadratically forced 
secondary modes must have carrier frequencies of 0 or 20. Guided by these 
considerations, we posit 

7, = eh@,(7) coswt+q,(~) sinwt} (n = 1 ,2 )  (3-1) 

(3.2) 

for the dominant modes and 

7, = e2h{A,(7) cos 2wt+B,(7) sin 2wt+Cn(7)} (n =Ji= 1,2)  

for the secondary modes, where 
h = k-l tanh kd (3.3) 

is a reference length, p,, q,, A,, B, and C, are slowly varying, dimensionless 
amplitudes, and 

is a dimensionless slow time. 
We now substitute (3.1) and (3.2) into (2.7) and average L over a 2n: interval of 

ot while holding 7 fixed (this average is denoted by ( )). Proceeding as in 1153 (the 
present calculation of ( L )  differs from that  in I1 only in the addition of the forcing 
term Fl r j ,  and in the choice of w ,  rather than wl, as the carrier frequency), we find 
that A,, B, and C, are given by II(3.10). Substituting these results into ( L )  and 
choosing 

(3.4) 7 = +€2Wt 

(3.5) e 3 - 3 . 5 -  2 k ZOX,, 
a1 

we obtain (cf. I1 (3.11)) 

wherein n is summed over 1 ,  2, an error factor of 1 +O(e2)  is implicit, 
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(Appendix). The pole at d / a  = 0.5059 reflects the corresponding zero of A .  
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E = El+&, E ,  = ? i ( p i + q i ) ,  (3.9a, b)  

M =  PlqZ-P,Pl  (3.10) 

( E  and M are measures of the energy and the angular momentum in the dominant 
modes), and A and B, which depend only on the aspect ratio d la ,  are given by I1 (A 23) 
and are plotted in figures I1 1-3. The tuning parameterb measures the frequency offset 
(/3 = 0 in 11); the weak ( E  4 1) nonlinearity considered here is negligible if 1/31 % 1 .  
The rescaled frequency parameter B proves to be convenient for numerical plots. 

Both A and B have simple poles at d l a  = 0.1523 in consequence of the internal 
resonance between the primary modes (ka = 1.8412) and the dominant axisymmetric 
mode (Lola = 3.8317), and the present formulation fails in some neighbourhood of 
this resonance (there also are internal resonances with the 02 and 22 modes, but they 
are extremely narrow; see 11). It is due in part to these poles and in part to the zeros 
of A and B at d l a  = 0.5059 and 0.4063 respectively, that we choose not to absorb 
either A or B in A. The advantages of such a re-scaling are, in any event, minor, since 
both A and B are determined by the single parameter d la .  We also find it convenient 

(3.11) 
to introduce 

which is plotted in figure 1. Note that p does not have a pole at  d l a  = 0.1523 and 
is positive except in the domain (bounded by the zeros of A and B)  

p = - B / A ,  
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0.406 < d / a  <0.506. It seems likely that higher-order terms would need to be 
incorporated in the Lagrangian to obtain results that  are uniformly valid near either 
A or B = 0;  however, since nonlinearity is weak in these neighbourhoods, and since 
the corresponding range of d / a  is small, I have not examined this question in detail. 

4. Evolution equations 
Requiring (~5) (3.6) to be stationary with respect to  each of thep, and q,, we obtain 

the canonical equations 
aH . aH 

p ,  = --, qn = -, 
aqn a p n  

(4.1 a, 6 )  

in which H now appears as a Hamiltonian (which would be a constant of the motion 
in the absence of damping). Linear damping may be incorporated at this stage by 
adding the terms -a(pn, qn) to the right-hand side of (4.1 a, b ) ,  where 

a = 2S/s2 (4.2) 

and S is the damping ratio (2nd is the logarithmic decrement) of free oscillations in 
the dominant m0de.t Substituting (3.7) into (4.1) and incorporating damping, we 
obtain 

p ,  = -up,-(p+AE)q,+BMp,, q, = -aq,+(p+AE)p,+BMq,+l,  (4.3a,b) 

p 2 .  = -ap,-((p+AE)q,-BMp,, q2 = -aq2+(~+AE)p2-BMq,.  (4.3c, d )  

Note that (4.3) are invariant under the reflection (p2, q,) +- (p2, q2) by virtue of 
symmetry with respect to the plane of excitation (8 = 0). 

The evolution equations (4.3) reduce to  the corresponding equations for a spherical 
pendulum (Miles 1984a) if A = and B = - 2  (y  = 3, which is realized in the present 
context only if d / a  is rather close to  the zero of A). They reduce to  the corresponding 
equations for a resonantly forced string (Miles 1984c) if A = - 3  and B = 1 (y  = 8 ) .  
The response of the pendulum is chaotic in various intervals of p if a is sufficiently 
small, whereas the response of the string appears (on the basis of numerical results) 
to  be regular for all a and p. 

The divergence of the set (4.3) in the (p,,p2, q,, q2)-space is 

(4.4) 

It follows that an element of volume in this space contracts like exp ( - 4a7), and every 
trajectory ultimately must be confined to  a limiting subspace of dimension less than 
four, which may be a fixed point (dimension zero), a closed curve (dimension one), 
a torus (dimension two or three), or a strange attractor (fractional dimension). It also 
may be shown that every trajectory ultimately must lie within the hypersphere 
E < 1/2a2 (cf. Miles 1984~) .  

t Linear damping could have been included in the initial formulation to obtain the same end 
results, but then the average Lagrangian could not have been introduced, and the resulting 
derivation of (4.3) would have been much longer. That linear damping must contribute the terms 
-ap,, .__ in (4.3) may be confirmed by neglecting the nonlinear terms therein and solving the 
resulting equations to obtain the linear approximation to the envelope of the sinusoidal carrier. 
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FIGURE 2. The resonance curves for A - b Z  = and p = i, 4, 1 and 2. The dashed portions of the 
curves correspond to unstable fixed points (the fixed points on the planar resonance curve are 
unstable between the termini (Bz and B4) of the non-planar curve). The bifurcation points p,, pz 
and B,+ are not resolved on the scale of the drawing. 

5. Fixed points 

resulting algebraic equations for p, and q,, are given by 
The fixed points of (4.3), as obtained by setting p, = q, = 0 and solving the 

p1  = -2(/3E+ A F  + B W ) ,  ( 5 . l a ,  b )  

p 2  = -2aM, qz = - 2 ( P + ( A + B ) E ) M ,  (5.1 c ,  d )  

q1 = 2aE, 

where either BM = 0 and 

A2E3+2A/3E2+(a2+$)E-2=0 ( B M = O )  (5.2) 

B2Mz = - ( A E + / ? ) { ( A + 2 B ) E + / ? } - a 2  > 0 (5.3) 

(5.4) 

for planar (pz = qz = 0) motion7 or 

and 

A ( A  Es + ( A  + B )  (3A + B ) / ? F  +{Aa2 + (3A + 2B) $} E+/?(a2 +p”) +&B = 0 

for non-planar motion. Only the positive-real roots of (5.2) and those positive-real 
roots of (5.4) for which 2Mz > 0 are physically significant. 

Following the terminology for the pendulum, I use planar to describe those motions for which 
p 2  = qe = 0. In the present context, this implies that the maximum free-surface displacement is 
in the plane of excitation. 
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FIQURE 3. The resonance curves for y = 1.377 and = Q (a), 
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There are no Hopf-bifurcation points for 
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FIGURE 3(c). For caption see opposite page. 

We now examine the resonance curves, E versus /3 with a and d / a  as family 
parameters, and their Poincark-bifurcation points. (I haveused the modifier ' PoincarB ' 
in the sense of Gurel (1979). The Hopf-bifurcation points are considered in $6.) 
Representative examples are plotted in the similarity form IAIi versus A-iP = p 
with A-fa2 = t ,  which is representative of small u (the most interesting case), and 
various ,u in figure 2 and for p = 1.377 (d /a  = co) and various a2 in figure 3. (I have 
not presented results for ,u < 0 (0.406 < d / a  < 0.506), both because their significance 
is questionable (see last sentence in $3) and because it appears that  anharmonic 
motion is possible only in a small subinterval (0.500 < d / u  < 0.506) of this interval 
(see last paragraph in $6).) The resonance curves become progressively simpler as a 
increases to a* = 0.687 IBIi (see (5.12) below) and are of little interest in the present 
context if a > a, ; see Miles (19844 for examples. The Poincar6-bifurcation points, 
a t  each of which there is a change in the number of fixed points, correspond to the 
turning points (at  which dp/dE = 0) of the resonance curves and to the termini (at 
which M2 = 0) of the non-planar resonance curves. 

The planar resonance curve, which is determined by (5 .2) ,  is isomorphic to that 
for the pendulum. It has a maximum a t  

E = -A-IP = ia-2 (5 .5)  

and corresponds to a 'soft '1' hard ' spring (in the terminology of mechanics) for A 3 0, 
although the planar resonance curve in figures 2 and 3 leans to the left for either sign 
of A in consequence of the choice of as the frequency parameter. The turning points 
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p1 and p3 (the indices correspond to those for the pendulum), at which $is a minimum 
and maximum respectively, are given by 

p1 = -;tAa-2-iA-1a4+O(a10), p3 = -fAi+$A-ia2+O(a4). (5.6u, b)  

They coincide a t  p 1 3  = p = -i(iA)i for a = $34 IiAlf, (5.7a, b)  

and the planar resonance curve is single-valued for a > 0.687 IAIi. 

condition (5.3), has a maximum at 
The non-planar resonance curve, which is determined by (5.4) subject to  the side 

E = L a - 2  , / ?=- ; f (A+B)a-2 .  (5.8a, b )  

It terminates on the planar resonance curve at the bifurcation points B2 and h4, which 
are determined by the coincidence of the roots of W(5.3) = 0 and (5.2). Eliminating 
p between these two equations, we obtain 

E3( 1 - 2a2E) = BE2, (5.9) 

which has two positive-real roots for sufficiently small a2. The corresponding 
bifurcation points are given by 

p, = - AE, -+B-lEi2 (n = 2, a), (5.10) 

wherein E2(4) is the larger (smaller) positive-real root of (5.9). Solving (5.9) and (5.10) 
for a2 6 1, we obtain 

p2 = -~Aa-2+B-2(+A-B)a4+O(a10) ,  ( 5 . 1 1 ~ )  

p4 = - B-”(~A + B)  - ~ B - Q A  - B)  a2 + o(a4). (5.1 1 b)  

These two bifurcation points coincide at 

p, = p4 = -(4B)-f(2A+B) for a = i34 E a,; (5.12u, b )  

(5.9) has no positive-real roots, and the non-planar resonance curve disappears, for 
a > a,. The bifurcation points p1 and p2 are unresolved on the scale of figure 2; 
however, i t  follows from ( 5 . 6 ~ )  and ( 5 . 1 1 ~ )  that  p2-P1 > 0 for 0 < a2 4 1.  

The cubic equation (5.4) has two turning points, p5 and pB, if 
(A+B)B 

a > 4A I;, (5.13) 

but either or both of ,Y5 and p6 may be excluded as turning points of the non-planar 
resonance curve by the requirements E > 0 and M2 > 0. Solving dp/dE = 0 for 
a2 Q 1 ,  we obtain 

p5 = - + ( A + B ) a - 2 -  (A+B)-1a4+O(a10), (5.14a) 

It should be emphasized that each point on the non-planar resonance curve 
corresponds to a pair of equilibrium points, which are related through 
(M,p2 ,q2 )+- ( (M,p2 ,q , )  (see remark following (4.3)). 
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6. Stability of fixed points 
Substituting 

where (pf, q!) are the coordinates of a particular fixed point and ]&I, I Q i l  4 1 ,  into (4.3), 
neglecting terms of second and third order in Pi and Qi, and requiring the determinant 
of the resulting linear equations in Pi and Qz to vanish, we obtain 

(6.2) F(V)  = (a + 4 4  + 20,(c + a)2+ D, = 0, 
where 

Do = 

The necessary and sufficient conditions for the real parts of the roots of the quartic 
equation (6.2) to be non-positive - i.e. for the perturbation (6.1) be stable - are 

F ( 0 )  = a4+2D,a2+D,  2 0, ( 6 . 5 ~ )  

D 2 + d  2 0, (D,+~Lz’)~-D,, 2 0. (6.5b, c )  

The discriminant F(0)  vanishes at the turning points (B = p, ,  3, 5 ,  6 )  of the planar and 
non-planar resonance curves and at their intersections (p  = B,,,), i.e. at the Poincar6- 
bifurcation points. It is negative (Re cr > 0) on the intermediate branch of the planar 
resonance curve (a, < p < a,) if that branch exists (a  < 0.687IAIi) and on that 
portion intercepted by the non-planar resonance curve (a < 0.687 JBJt, p ,  < p < p4). 
It also is negative on the intermediate branch of the non-planar resonance curve if 
that curve has three branches (as for p < 0) or on the lower branch where two 
branches exist (e.g. p = 2 in figure 2). 

The zeros of the discriminant (6.5c), PI* and pz*, are Hopf-bifurcation points, at 
which the real parts of a pair of complex-conjugate zeros of F(a)  become positive. 
Numerical values for A-%a2 = are plotted in figure 4. It may be established 
analytically that (cf. ( 5 . 6 ~ )  and ( 5 . 1 1 ~ ) )  

pl* = - + A C C - ~ + O ( ~ ~ )  (6.6) 

as a J O ,  and it follows from the numerical results that > p z .  If a is sufficiently 
small and p is sufficiently large, p2* > p,, and there.is a finite range, 8, < p < p,;, 
in which neither planar nor non-planar harmonic motion is stable; but if 
- 1 < p < pc, where p c  is slightly less than 0.50, p,* < p ,  (if a is sufficiently small 
for Pa* to exist), and either planar or non-planar harmonic motion is stable for 
all p. It then appears that limit cycles and/or chaotic motions are impossible 
for 0.30 < d / a  < 0.50. 
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FIGURE 4. The Hopf-bifurcation points, PIS* (PI* < pz,) for p = i, 4, 1, 1.377 and 2 (-) and 

the turning points, a,, (a1 < p3) of the planar resonance curve ( -  - - -). 

7. Asymptotic trajectories 
The asymptotic (i.e. attained after the decay of transients) phase-space trajectory 

depends on a, p and p and, in a more limited sense, the initial conditions. Numerical 
integrations suggest that, at  least if the Hopf bifurcations are supercritical (as they 
appear to  be in the present problem), a trajectory terminates on a stable fixed point 
if at least one exists for the prescribed a and p ;  if there are more than one (either 
two or three in the present context) such points, which is attained depends on the 
initial conditions. The asymptotic trajectories in those parametric domains in which 
no stable equilibrium points exist ( p ,  < p < p2*) are non-planar and either periodic 
or chaotic.? The periodic trajectories are limit cycles and are uniquely determined 
by a, p and ,u up to the reflection (pz, qz)+- (p2, q2) ,  and which of a complementary 
pair is realized depends on the initial conditions; e.g. the limit cycle obtained for the 
initial conditions (pl, q l , p z ,  q2)  = (0, O , O ,  1) is replaced by its complement if the initial 
conditions are replaced by (0, 0, 0, - 1).  

t It follows from the PoincarkBendixson theorem and (4.4) that a planar trajectory must be 
asymptotic to a stable fixed point if one exists. The non-planar motions conceivably could be 
quasi-periodic (comprising two or more incommensurate frequencies), but no such asymptotic 
trajectories were obtained in the parametric domains that were numerically explored. 
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Periodic solutions of (4.3) presumably could be obtained by positing Fourier series 
and regarding the fundamental frequency as an eigenvalue; however, the algebra is 
forbidding. The angular frequency (for the slow time r )  in the limit P?/3,, (we 
anticipate that the Hopf bifurcation at p = p,, is supercritical, so that the periodic 
solution is stable), as obtained by setting cr = iw, in (6.2) and requiring the imaginary 
part of the result to vanish (the vanishing of the real part is equivalent to the 
vanishing of the left-hand side of (6.6c)), is given by 

(7.1) 
(The second pair of eigenvalues for /3 = p2* is given by cr = -2afiw,.) 

Chaotic solutions presumably are sensitive to small changes in the numerical 
specifications of a, p, p and the initial conditions. Nevertheless, their general 
appearance (or at least that of their (pl,p,)-projections) does appear to be determined 
for specified a, p and p to within a possible mixing of a complementary pair of 
trajectories that are related through the reflection (p,, q,) +- (p,, q,) ; see below. 

w i  = a2 + D,. 

8. Numerical integrations 
Numerical integrations of (4.3) were carried out using an Adams-Bashforth routine 

with a round-off error of less than lop4. (Decreasing the round-off error from 
to lops made no perceptible difference in a subset of the results presented here.) 
Various plane projections ((p, ,~ , ) ,  (ql, q,), (pl, q,), (p2, q,)) and Poinear6 sections of 
the phase-space trajectories had been examined in the pendulum problem (p  = 3) and 
led to the decision that the (pl, p,)-projections offered the optimum combination of 
information and computing economy. These projections are Poincer6 maps of the 
(ql, q,)-projections of the free-surface displacement at the periodically spaced instants 
ot = 0 (mod 2%). 

The power spectra of N-point runs of E were determined through a fast-Fourier- 
transform routine according to 

k where 
fk=-,, r , = n A  (8.2a, b )  

are the discrete, dimensionless frequency and time, A is the increment of r ,  T EE NA 
is the length of the run (0 < r < T ) ,  and 

is the window (or taper) function, normalized to an r.m.s. value of unity. The value 
of A for all runs was 2-4. The corresponding Nyquist frequency, 16, is roughly two 
orders of magnitude above the fundamental frequencyf, or spectral peak in the 
followingresults. Numericalnoise was below P = lo-*. Thezero-frequency components 
of the power spectra in figure 5 have been eliminated by omitting the first two 
(12 = 0 , l )  terms. 

Both the (pl, p,)-trajectories and the power spectra in those parametric ranges that 
were sampled and for which pz* > (so that either limit cycles or chaotic motion 
may occur) resemble those for the resonant forcing of a spherical pendulum (Miles 
1984a) ; accordingly, only a few results are presented here. The results for p = 1.3772 
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= A-iP log, T Trajectory 

0 .8(  -0.2) -0.2 5 FPt 
-0.4 6 Weak LC 
-0.5 6 Weak LC 
-0.52 10 LC (figure 5a) 
-0.53 8 LGweakPD 
-0.54 10 L G P D  (figure 5b) 

-0.70 I0 Chaotic+periodic (figure 5c) 
-0.80 7 Chaotic 
-0.85 10 Chaotic (figure 5d) 
-0.90 7 Chaotic 
-1.43 7 Chaotic 
- 1.44 6 FP 

-0.56, -0.58, -0.60 7 LC-PD 

t FP = fixed point, LC = limit cycle, PD = period doubling. 

TABLE 1 .  Results of numerical integration for ,u = 1.3772, = t 

and u2 = iAa, with p decreasing from values above p2* = -0.400 to values below 
p ,  = - 1.44, are described in table 1 and plotted in figure 5. Trajectories for p > -0.40 
spiral into the calculated fixed points, although rather slowly as $4-0.40. A limit 
cycle, which projects as an oval in the (p,,p,)-plane, appears a t  p = -0.40 and 
increases in amplitude a s p  is decreased below this value. The fundamental frequencies 
of the damped oscillations for p just above -0.40 and of the limit cycles for p just 
below -0.40 approximate f*, as calculated from (7 .1) .  A typical limit cycle, 
p = -0.52, is displayed in figure 5(a) .  Weak period doubling appears a t  = -0.53 
and persists a t  least down to p = -0.60; see e.g. figure 5 ( b ) .  It is to be expected that 
a more careful search would produce transitions to period quadrupling, octupling, 
etc. (as in the pendulum problem) before the transition to chaotic motion. Chaos 
appears a t  /3=-0.70 (figure 5 c ) ,  for which the power spectrum contains both 
broadband components and lines corresponding to a dominant frequency (the 
descendant off *) and its integral and half-order subharmonics. The corresponding 
(pl, p,)-trajectory is built up from a sequence of double-period trajectories such as 
that for p = -0.54, but with each complete cycle displaced from the preceding cycle. 
It seems likely that this trajectory urtimately would fill a finite area in the 
(p,,p,)-plane; however, for the finite (T = 21°) run of figure 5 ( c ) ,  an open space is 
discernible between the two families of half-cycles. At values of p less than about 
- 0.80, depending on the initial conditions, the chaotic trajectories comprise a 
trajectory with a shape resembling that for p = -0.70 (but without the residual 
period-doubling characteristic) together with its reflection in the p ,  = 0 axis, 
presumably representing a repeated (albeit random) transition between a particular 
solution and its (pl, ql, p,, p2) -+ (pl, ql ,  -p2, - q 2 )  reflection (see remark follow- 
ing (4.3)). Forpsubstantially above -0.80, e.g. p = -0.70, this transition occurs only 
rarely and is not captured in a run as long as 211 ; on the other hand, for p substantially 
below -0.80, e.g. p = -0.85 (figure 5 4 ,  the transition occurs every few cycles 
(typically every 1-3 cycles, yielding an almost symmetrical pattern. Chaotic motion 
remains until p is decreased to p = p ,  = - 1.44, with fixed-point solutions being 
obtained for p ,< - 1.44. It must be emphasized, however, that the sampling interval 
of p for this series of runs is rather coarse and that it is possible, or even likely, that 
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A-ip 

-1.4 
-1.5 
-1.6 
- 1.65 
-1.7 } 
- 1.8 

log, T Trajectory 

FP 
LC 
LC-PD 
LC 
Chaotic I LC 

7 

6 

TABLE 2. Results of numerical integration for p = 0.6, A3az  = { 

(as in the pendulum problem) there are subintervals within -0.70 2 p 2 - 1.43 in 
which limit cycles, rather than chaotic trajectories, are attained. 

A second series of runs was made for ,u = 0.6 and u2 = +At, for which p2* = - 1.21 
and p ,  = - 1.44 (table 2). Limit cycles appear, as expected, as p is decreased through 
p2*, and persist, with a brief window of chaotic motions in a small neighbourhood 
of /3 = - 1.5, down to just below p = - 1.60, which is significantly below p3 = - 1.44. 
A similar extension of the limit-cycle regime below the turning point of the planar 
resonance curve was observed for the pendulum and appears to represent either a 
very long transient or, more plausibly, a finite-amplitude extension of the basin of 
attraction (in the phase space) of the limit-cycle regime. 

This work was supported in part by the Physical Oceanography Division, National 
Science Foundation, NSF Grant OCE-81-17539, and by the Office of Naval Research, 
Contract NR 062-318 (430). 

Appendix. Comparison with Hutton (1963) 
Hutton (1963) considers only a single configuration, for which a = 5.44 in., 

d = 8.91 in. ( d / a  = i), and o1 = 10.90 rad/s. Comparing his formulation with mine, 
in particular his evolution equation (A 37b) with my (4.3b), I find that 

1 K2 
L 2 X l  2 Kl 

2 

A = 2 ( 5 )  F;K, ,  ,u=--, 

where Fl is given by his (A 38a), and Kl = 0.485 x and K2 = 1.371 x low6 are 
given by his table 2. The units of Kl and K,, which must be (time)2/(length)4, are 
not stated; however, all lengths for which dimensions are given are in inches. Taking 
the units of the above values of K ,  and K2 to be I obtain A = 1.05 andp = 1.41, 
which are close to the values A = 1.08 and ,u = 1.38 given by the results in I1 for 
d / a  = i. There are significant discrepancies between the values of the various 
integrals given by Hutton’s table 2 and the values in 11, but Hutton (private 
communication) informs me that the correct values of the integrals were used in his 
calculations of K,  and K2 and that errors in his table 2 were introduced in a 
subsequent revision of his normalizations. 
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